Evaluation Metrics

fgvc.core.metrics.binary_segmentation_scores(preds: ndarray, targs: ndarray, reduction: str = 'mean') dict

Compute segmentation scores Balanced Accuracy, Precision, Recall, F1, and IoU.

Parameters:
  • preds – Array with predicted values.

  • targs – Array with target values.

  • reduction – Whether to aggregate scores using mean, sum, or not aggregate at all.

Returns:

A dictionary with segmentation scores.

Return type:

scores

fgvc.core.metrics.binary_segmentation_tp_fp_fn_tn(preds: ndarray, targs: ndarray, pos_label: int = 1) Tuple[ndarray, ndarray, ndarray, ndarray]

Compute values of confusion matrix for binary segmentation.

Parameters:
  • preds – Array [b, (2), h, w] with predicted values.

  • targs – Array [b, h, w] with target values.

  • pos_label – Class to report in the binary classification.

Returns:

  • tp – Array [b,] with True Positives for each sample.

  • fp – Array [b,] with False Positives for each sample.

  • fn – Array [b,] with False Negatives for each sample.

  • tn – Array [b,] with True Negatives for each sample.

fgvc.core.metrics.classification_scores(preds: ndarray, targs: ndarray, *, top_k: int | None = 3, return_dict: bool = True) dict | Tuple[float, float, float]

Compute top-1 and top-k accuracy and f1 score.

Parameters:
  • preds – Numpy array with predictions.

  • targs – Numpy array with ground-truth targets.

  • top_k – Value of k to compute top k accuracy.

  • return_dict – If True, the method returns dictionary with metrics.

Returns:

A dictionary or tuple with classification scores.

Return type:

scores