training_utils
- fgvc.core.training.training_utils.concat_arrays(*lists: List[List[ndarray | dict]]) List[List[ndarray | dict] | None]
Concatenate lists of numpy arrays with predictions and targets to numpy arrays.
- Parameters:
lists – (One or multiple items) List of numpy arrays or dictionary of lists.
- Return type:
(One or multiple items) Numpy array or dictionary of numpy arrays.
- fgvc.core.training.training_utils.get_gradient_norm(model_params: Tensor | Iterable[Tensor], norm_type: float = 2.0) float
Compute norm of model parameter gradients.
- Parameters:
model_params – Model parameters.
norm_type – The order of norm.
- Return type:
Norm of model parameter gradients.
- fgvc.core.training.training_utils.to_device(*tensors: List[Tensor | dict], device: device) List[Tensor | dict]
Convert pytorch tensors to device.
- Parameters:
tensors – (One or multiple items) Pytorch tensor or dictionary of pytorch tensors.
device – Device to use (CPU,CUDA,CUDA:0,…).
- Return type:
(One or multiple items) Pytorch tensor or dictionary of pytorch tensors.
- fgvc.core.training.training_utils.to_numpy(*tensors: List[Tensor | dict]) List[ndarray | dict]
Convert pytorch tensors to numpy arrays.
- Parameters:
tensors – (One or multiple items) Pytorch tensor or dictionary of pytorch tensors.
- Return type:
(One or multiple items) Numpy array or dictionary of numpy arrays.